Skip to content

Model Evaluation

Learn how to systematically evaluate and compare AI models using Umwelten's comprehensive evaluation system.

Overview

Model evaluation is at the heart of Umwelten's functionality. The eval command family provides systematic testing across multiple models with comprehensive reporting, cost analysis, and resume capability.

Basic Evaluation

Simple Model Comparison

bash
umwelten eval run \
  --prompt "Explain machine learning in simple terms" \
  --models "ollama:gemma3:12b,google:gemini-2.0-flash,openrouter:openai/gpt-4o-mini" \
  --id "ml-explanation" \
  --concurrent

With System Context

bash
umwelten eval run \
  --prompt "Explain quantum computing applications" \
  --models "google:gemini-2.0-flash,openrouter:openai/gpt-4o" \
  --id "quantum-apps" \
  --system "You are a physics professor explaining to undergraduate students" \
  --temperature 0.3

Advanced Features

Interactive UI Mode

Watch evaluations in real-time:

bash
umwelten eval run \
  --prompt "Write a creative story about AI" \
  --models "ollama:gemma3:12b,google:gemini-2.0-flash" \
  --id "ai-story" \
  --ui \
  --concurrent

File Attachments

Test multimodal capabilities:

bash
umwelten eval run \
  --prompt "Analyze this document and extract key insights" \
  --models "google:gemini-2.0-flash,google:gemini-2.5-pro-exp-03-25" \
  --id "document-analysis" \
  --attach "./documents/report.pdf" \
  --concurrent

Evaluation Options

Core Parameters

  • --prompt: The prompt to evaluate (required)
  • --models: Comma-separated models in provider:model format (required)
  • --id: Unique evaluation identifier (required)
  • --system: Optional system prompt
  • --temperature: Temperature for generation (0.0-2.0)
  • --timeout: Timeout in milliseconds (minimum 1000ms)

Advanced Options

  • --resume: Re-run existing responses (default: false)
  • --attach: Comma-separated file paths to attach
  • --ui: Use interactive UI with streaming responses
  • --concurrent: Enable concurrent evaluation for faster processing
  • --max-concurrency <number>: Maximum concurrent evaluations (1-20, default: 3)

Report Generation

Generate Reports

bash
# Markdown report (default)
umwelten eval report --id ml-explanation

# HTML report with rich formatting
umwelten eval report --id quantum-apps --format html --output report.html

# CSV export for analysis
umwelten eval report --id ai-story --format csv --output results.csv

# JSON for programmatic use
umwelten eval report --id document-analysis --format json

List Evaluations

bash
# List all evaluations
umwelten eval list

# Show detailed information
umwelten eval list --details

# JSON format for scripting
umwelten eval list --json

Best Practices

Model Selection

  • Start with free Ollama models for development
  • Use Google Gemini 2.0 Flash for production (cost-effective)
  • Reserve premium models (GPT-4o) for critical quality needs
  • Use multiple models for comparison and validation

Prompt Design

  • Be specific about desired output format and length
  • Include context about target audience when relevant
  • Use system prompts to set role and expertise level
  • Test with different temperature values for creativity vs consistency

Performance Optimization

  • Use --concurrent for faster multi-model evaluation (3-5x speedup)
  • Set appropriate --timeout for complex prompts
  • Use --ui for long-running evaluations to monitor progress
  • Enable --resume for reliability with large evaluation sets

Examples

For comprehensive examples, see:

Next Steps

Released under the MIT License.